近期,廣東農科院水稻所生理生態研究團隊在Journal of the Science of Food and Agriculture(中科院二區TOP,IF=4.1)在線發表“Determining nitrogen topdressing rates in accordance with actual seedling density and crop nitrogen status in direct-seeded rice” 研究論文,為直播稻氮肥運籌策略的優化提供了新方法,這將有助於提升直播稻的穩產性。
直播是一種省工、節本的輕簡化水稻栽培措施,但由於穩產性差,直播稻的推廣應用受到嚴重製約。群體結構不穩定是造成直播稻產量不穩定的主要原因。
本研究通過設置多個氮肥和密度水平開展了為期兩年的大田試驗。結果表明,實際出苗數和分蘖肥施用量顯著影響最高苗數,幼穗分化期植株吸氮量和穗肥施用量顯著影響產量,並建立相關回歸模型(Table 1)。研究提供了一種基於監測實際出苗數和植株氮狀況來量化直播稻追肥施氮量的新方法,為通過氮肥調控解決直播稻群體結構和產量不穩定問題提供了新途徑。
Table 1.The relationship between tiller number at panicle initiation (TILPI), planting density, and tiller N rate (Ntil) in 2017 and 2020 and the relationship between total nitrogen (N) uptake at maturity or grain yield, total nitrogen uptake at panicle initiation (NUPPI), and N application rate at panicle initiation (NPI) in 2020. |
Year |
Season |
Linear regression model |
n |
R2 |
Fvalue |
With actual seedling number at 3-leaf stage (ASD) and tiller nitrogen rate (Ntil) as dependent variable |
2017 |
Early |
TILPI=1.193×ASD+1.000×Ntil+334.3 |
12 |
0.894 |
37.8** |
|
Late |
TILPI=1.451×ASD+0.587×Ntil+238.0 |
12 |
0.899 |
39.8** |
2020 |
Early |
TILPI=1.138×ASD+1.035×Ntil+159.3 |
8 |
0.887 |
19.7** |
|
Late |
TILPI=0.774×ASD+1.222×Ntil+178.3 |
8 |
0.936 |
36.5** |
With grain yield (GY) and nitrogen application rate at panicle initiation (NPI) as dependent variable |
2020 |
Early |
GY=0.065×NUPPI+0.019×NPI+3.661 |
8 |
0.814 |
10.9* |
|
Late |
GY=0.032×NUPPI+0.010×NPI+4.397 |
8 |
0.783 |
9.0* |
廣東省農科院水稻所為論文第一單位,鍾旭華研究員和潘俊峰副研究員為該文章的通訊作者,彭碧琳助理研究員為論文第一作者,王昕鈺助理研究員為論文共同第一作者。該研究得到了韶關市科技計劃項目、廣東省現代農業產業技術體係創新團隊(水稻)、必威betways “十四五”農業優勢產業學科團隊入庫項目、必威betways 科技人才引進專項資金項目-優秀博士項目等的共同資助。
點擊鏈接查看全文:https://doi.org/10.1002/jsfa.13117